Some Results on Vertex Coloring Edge Weighting of Double Graphs and Join Graphs
نویسندگان
چکیده
منابع مشابه
Edge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملVertex-coloring 2-edge-weighting of graphs
A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1, . . . , k}, to each edge e. An edge weighting naturally induces a vertex coloring c by defining c(u) = ∑ u∼e w(e) for every u ∈ V (G). A k-edge-weighting of a graph G is vertexcoloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uv ∈ E(G). Given a graph G and a vertex coloring c0, does th...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملSome Results on Edge Cover Coloring of Double Graphs
Let G be a simple graph with vertex set and edge set V G E G . An edge coloring C of G is called an edge cover coloring, if each color appears at least once at each vertex v V G . The maximum positive integer k such that G has a k edge cover coloring is called the edge cover chromatic number of G and is denoted by . It is known that for any graph G, c G 1 c G ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2017
ISSN: 2475-8841
DOI: 10.12783/dtcse/cnsce2017/8913